Tungsten targets the tumor microenvironment to enhance breast cancer metastasis.

نویسندگان

  • Alicia M Bolt
  • Valérie Sabourin
  • Manuel Flores Molina
  • Alice M Police
  • Luis Fernando Negro Silva
  • Dany Plourde
  • Maryse Lemaire
  • Josie Ursini-Siegel
  • Koren K Mann
چکیده

The number of individuals exposed to high levels of tungsten is increasing, yet there is limited knowledge of the potential human health risks. Recently, a cohort of breast cancer patients was left with tungsten in their breasts following testing of a tungsten-based shield during intraoperative radiotherapy. While monitoring tungsten levels in the blood and urine of these patients, we utilized the 66Cl4 cell model, in vitro and in mice to study the effects of tungsten exposure on mammary tumor growth and metastasis. We still detect tungsten in the urine of patients' years after surgery (mean urinary tungsten concentration at least 20 months post-surgery = 1.76 ng/ml), even in those who have opted for mastectomy, indicating that tungsten does not remain in the breast. In addition, standard chelation therapy was ineffective at mobilizing tungsten. In the mouse model, tungsten slightly delayed primary tumor growth, but significantly enhanced lung metastasis. In vitro, tungsten did not enhance 66Cl4 proliferation or invasion, suggesting that tungsten was not directly acting on 66Cl4 primary tumor cells to enhance invasion. In contrast, tungsten changed the tumor microenvironment, enhancing parameters known to be important for cell invasion and metastasis including activated fibroblasts, matrix metalloproteinases, and myeloid-derived suppressor cells. We show, for the first time, that tungsten enhances metastasis in an animal model of breast cancer by targeting the microenvironment. Importantly, all these tumor microenvironmental changes are associated with a poor prognosis in humans.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Mimic of the Tumor Microenvironment on GPR30 Gene Expression in Breast Cancer

Introduction: The G-protein coupled receptor 30 (GPR30) gene is a member of the G-protein coupled receptor (GPCR) family; involved in breast, endometrial, and ovarian cancers. Many GPCR receptors that are implicated in several types of human cancers are correlated with increased cell proliferation and tumor progression; especially GPR30 gene. Methods: The breast cancer MCF-7 and MDA-MB-231 cel...

متن کامل

Molecular targets of pomegranate (Punica granatum) in preventing cancer metastasis

Metastasis is the primary cause of mortality and morbidity among cancer patients and accounts for about 90% of cancer deaths. The most common types of treatment for cancer metastasis are chemotherapy and radiotherapy. However, such therapy has many serious side effects that could diminish the quality of life in patients. There is increased appreciation by the scientific community that natural c...

متن کامل

Tumor microenvironment: driving forces and potential therapeutic targets for breast cancer metastasis

Distant metastasis to specific target organs is responsible for over 90% of breast cancer-related deaths, but the underlying molecular mechanism is unclear. Mounting evidence suggests that the interplay between breast cancer cells and the target organ microenvironment is the key determinant of organ-specific metastasis of this lethal disease. Here, we highlight new findings and concepts concern...

متن کامل

بررسی میزان شیوع جهش δ 32 در ژن CCR5 بیماران مبتلا به سرطان پستان شهرستان رفسنجان

Background and purpose: Chemokines and their receptors are expressed in different types of malignancies. CC chemokines MIP-1a (CCL3), MIP-1b (CCL4) and RANTES (CCL5) is believed to be anti-tumor and also aid to the metastasis in tumor microenvironment. CCR2 and CCR5 are special G-protein receptors for these chemokines. Due to the important role of CCR5 chemokine receptor in tumor biology, this ...

متن کامل

MiR-6165 Dysregulation in Breast Cancer and Its Effect on Cell Proliferation and Migration

Background: ncRNAs have been identified as oncogenic drivers and tumor suppressors in any type of cancer. Although many classes of ncRNAs have been reported, most studies have been performed on microRNAs (miRNAs). miRNAs can regulate several target genes and affect important processes such as homeostasis, angiogenesis, cell proliferation, differentiation, and apoptosis. Located in the p75NTR ge...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Toxicological sciences : an official journal of the Society of Toxicology

دوره 143 1  شماره 

صفحات  -

تاریخ انتشار 2015